
w

=,,.

t_

0
0 _a3

! ,--0

Z _0

_o

O_
N

I--
Z
LU

,.J 3
uJ

luJO

_uJ'O
Z_ •

_LL >

O0"_

"0 0

eu.._

_' _0

I _-_

A u to m a ting the Verific a tio n
of Ada Software Development

SofTech, Inc.

9130/88

Cooperative _greement NCC 9-16
Research Activity No. SE. 13

NASA d0h-nson Space Center
Engineering Directorate

Flight Data Systems Division

(_ ©

Research Institute for Computing and Information System s

..... University of Houston - Clear Lake

T.E.C.H.N.I.C,A .L R.E.P. O°R. T

The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and

information sciences. As part of this endeavor, UH-Clcar Lake proposed a

partnership with JSC to jointly define and manage an integrated program of research
in advanced data processing technology needed for JSC's main missions, including

administrative, engineering and science responsibilities. JSC agreed and entered into

a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to

jointly plan and execute such research through RICIS. Additionally, under

Cooperative Agreement NCC 9-16, computing and educational facilities are shared

by the two institutions to conduct the research.
_e mission of RICIS is to conduct, coordinate and disseminate research on

computing and information systems among researchers, sponsors and users from

UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of

faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear
Lake establishes relationships with other universities and research organizations,

having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and

research objectives to advance knowledge in the computing and information
sciences. Working jointly with NASA/JSC, RICIS advises on research needs,

recommends principals for conducting the research, provides technical and

administrative support to coordinate the research, and integrates technical results

into the _perative goals of UH-Clear Lake and NASA/JSC.

L_

w

Automating the Verification
of Ada Software Development

w

q

m

w

w

m
i

mm

I

MB

b

m_

I

_m
U

N

1Win

r

m_

m

n

w _

I •

j.i

!

w

Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by SofTech, Inc. Dr. Charles McKay served as
RICIS research coordinator.

Funding has been provided by the Engineering Directorate, NASA/JSC through

Cooperative Agreement NCC 9-16 between NASA Johnson Space Center and the

University of Houston-Clear Lake. The NASA technical monitor for this activity was

Stephen A. Gorman, Chief, Systems Support Branch, Flight Data Systems Division,

Engineering Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the Utiited States Government.

t

L

F_

i

PRECED|_qG PAGE BLANK NOT FILL'VI_D

g

US _

m
IIIIB

Immm

lib

Ill

ID

i

_m
IB

Ill

m

m

n _

ii

Q

mm
J

m
l

m

w

B
mmm

m

"- SOFTeCH
Automating the Verification of Ada Software Development

w

Prepared by SofTech, Inc., Houston Operations

A UHCL/RICIS Report, Project SE.13

Sept. 30, 1988, SofTech Document HO-O04

Introduction

Developing software is a diffiqult task for people. It requires a

precision that is difficult to attain on a regular basis. We can only assume

we have written a procedure or other program unit correctly by observing that

it compiles and links correctly, that it correctly interfaces with other

program units, and ultimately that it executes correctly under the variety of

circumstances which it encounters.

w

Unfortunately, in many cases, the assertion of correctness is essential

to the preservation of life and property. The observation of failure in

actual use is unacceptable. How can we develop a sense of correctness prior

to actual use?

There are two approaches to this task of correctness verification in

software systems:

- Formal Verification, and

- Demonstrations of Correctness (testing).

m

w

v

wmm

In the first case, formal verification, we apply formal reasoning to the

software's textual form. To the extent that it is possible we establish

logical assertions about the correct behavior, then apply formal reasoning to

the program's code to compare what we've reasoned its behavior will be against
what we've asserted it should be.

This process brings two attributes which are reassuring. One is that of

formal reasoning, a logical process which is agreed upon and accepted.

Independent analysts can agree on the steps and their meaning. The second is

that of cross checking between independent sources. The cross checking in

this case is between the program code and the formal statement of intended

processing. The more independent derivations of what is correct which can be

shown to agree with each other the greater the confidence of correctness.

The second approach to verifying correctness is one of demonstrations.

To the extent we can mimic the conditions of the software's execution in all

cases, we do so and inspect for correct or erroneous execution. This is

complicated by a combinatorial explosion of factors which may affect the

execution, but provides the powerful reassurance of "having seen it with your

own eyes".

Neither of these are perfect, although testing has established itself as

the only practical approach in most cases. A degree of testing is necessary

in any case to assure the product is correct in its final executable form,

Copyright SofTech, Inc. 1988, all rights reserved

soFreCH
since most formal verification takes place on

formal verification has been considered too

cerebral for common usage.

source code only. Further,

cumbersome, error-prone and

This paper discusses the possibilities for changing this situation.

While these flaws must be acknowledged today it is also true that the burden

of formal verification is lessening and the need is growing. As software

systems become larger and more complex it becomes increasingly difficult to

test all execution paths and more important that the kernel, critical code be

correct. Most importantly, formal verification must be viewed as

complementary to testing. It is important to recognize that the path to

greater adoption of formal verification need not involve the all or nothing

abandonment of testing.

Barriers to Automated Formal Verification

Two of the factors which stand in the way of greater automation of the

formal verification process are imprecision in specification and computational

magnitude.

For the first of these, the difficulty is that while most computing

languages are concise enough to effectively state most computations they are

not usually concise enough to support a formal verification of that

computation. While this may seem at first glance difficult to accept, it is

supported by the recognition that there are many details of the computation

which are not of concern in determining the final result but which do lead to

some Indeterminancy of specific statements in the language. Indeed one of the

principles of higher-level programming is the suppression of detail from the

statement of the desired computation.

In the case of Ada software, a source of imprecision is the language

definition itself. There have been and continue to be efforts at formalizing

the definition of Ada, but for the purposes of verification there are some

aspects of the language which will by necessity remain too loosely defined.

This is one of the limits which is imposed on the potential of formal

verification.

The degree of indeterminancy is one of the factors that leads to the

second factor, that of the computational load of the verification process.

Formal verification is a complex and detailed process which requires both

detailed specification and detailed analysis. Without some degree of

automation this complexity becomes prohibitive for all but small and critical

modules. Even with the automation approaches envisioned for the near future,

formal verification will remain an expensive process with an expected

application arena consisting of small systems or pieces of systems.

W

m

g

I

m

m

U

mm

g

i

m

=
J

i

mm

w

Advancement Paths

The potential for advancement in automating formal verification is based

on addressing these barriers. The need for formality is present both in the

program code itself and in the assertions of proper behavior. Correspon-

SofTech -2- HO-O04

W

l

b

= ,

w

w

w

m
w

SC;FTeCH
dingly, we need a formal definition
will call the specification language.

of the programming language and what we

In the case of Ada, there two different approaches which have been

adopted: denotational definition and axiomatic definition. Although one may

be derived from the other, the axiomatic definition is the form which is

preferable for formal verification. Unfortunately, the denotational

definition is much further along and has greater support for completion.

In either case, the project is a massive one. The incomplete

denotational definition is around i000 pages. One of its problems is a

concern for the accuracy of the work, considering the difficulty of dealing

with such a large detailed volume. The cost of doing a detailed formal

definition of Ada and in preparing a usable, accurate form for formal

verification is perhaps the greatest obstacle to progress in this field.

Until this is fully addressed, only limited proofs based on partial and less

detailed formalizations of the language can be attempted.

For specification languages it is not yet clear what approach to take,

and therefore what language should be used. There are tradeoffs between the

characteristics of level of abstraction, expressiveness, formality and ease of

use. The English language is one option frequently adopted. However, while

it is commonly known, highly expressive and flexible as to the level of

abstraction, it suffers greatly from a lack of formality. At the other

extreme, a simple annotation of an Ada program which provides a limited

ability to assert properties of the program can be considered. In this case
the annotations can be made sufficiently formal, but the range of expression

is small and the level of abstraction is that of the program itself, not of

some higher design principle.

This latter approach has been adopted for some small scale verification

systems which attempt to verify limite_ properties of an Ada program, as will

be discussed further. It is also the approach taken by the annotation

language ANNA, developed at Stanford University. This language is used with

runtime monitoring to provide more substantial support in the verification of

applications with tasking in addition to other verification efforts. A more

abstract approach is possible through the language Z. This is a

mathematically based language based on propositional calculus.

From this consideration of the need for greater formalism it should be

clear there is also the need for narrowing the scope of formal verification

efforts. In this case, it is important to establish the project priorities

and to focus on attainable results. There are important and attainable

properties which can be verified without massive computing resources, such as

the absence of exceptional conditions (the exceptional condition cannot occur

during a normal execution of the program) and lack of infinite loops. These

properties are not only useful from a correctness point of view but could also

aid in certain program optimizations.

w

SofTech -3- HO-004

SOFTeCH W

The other aspect of narrowing the scope of verification efforts is be

selective in its application. Not all parts of a system are equally critical

to the acceptable behavior of the program. There is an analogy here to the

development principle of building a system first, then analyzing where it

spends most of its time to decide where to concentrate efforts at improving

its performance. Not all sub-systems are equally critical to high

performance.

w

Q

m

m

g

W

g

elm

g

m

J

li

SofTech -4- H0-004

i

W

w

SC:;FTeC:H
As a final note, the advancement in the technology of computing systems

(AI and expert systems) and support tools for programmers has made the

development of an automatic verification system very possible. What is needed

is the recognition of the value of such a system and making it broadly

accessible. While there are the difficult aspects of establishing a basis of

formality and in dealing with the computational magnitude of formal

verification techniques, there are ways of constraining these problems and

reducing their scale. With the right support systems, formal verification can

be a significant tool for programmers and system developers in the development

of reliable, dependable software.

w

w

i 7

w

i

w

z

i

SofTech -5- HO-O04

ag_

at

i

i

i

i

tit

I

lid

I

li

tam

i

i

